№1988
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростите выражение: \(\frac{1}{x+y} \cdot (x^{3}+y^{3})\)
Ответ
\(x^{2}-xy+y^{2}\)
Решение № 1988:
\(\frac{1}{x+y} \cdot (x^{3}+y^{3})=frac{x^{3}+y^{3}}{x+y}=\frac{(x+y)(x^{2}-xy+y^{2})}{x+y}=x^{2}-xy+y^{2}\)