№1971
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростите выражение: \(\frac{a+b}{2b(a-b)}:\frac{a+b}{2b^{2}(a-b)}\)
Ответ
\(b\)
Решение № 1971:
\(\frac{a+b}{2b(a-b)}:\frac{a+b}{2b^{2}(a-b)}=frac{a+b}{2b(a-b)} \cdot \frac{2b^{2}(a-b)}{(a+b)}=\frac{(a+b) \cdot 2b^{2} \cdot (a-b)}{2b \cdot (a-b)(a+b)}=b\)