№1941
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Найдите сумму ряда аликвотных дробей \(\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+ … +\frac{1}{99 \cdot 100}\)
Ответ
\(0,99\)
Решение № 1941:
\(\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+ … +\frac{1}{99 \cdot 100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+…+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}-\frac{100}{100}-\frac{1}{100}=\frac{99}{100}=0,99\)