№1835
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Найдите область определения алгебраических дробей и выполните указанные действия: \(\frac{3-2b^{2}}{2b-1}+b+3\)
Ответ
\(b \neq \frac{1}{2}\)
Решение № 1835:
\(\frac{3-2b^{2}}{2b-1}+b+3=\frac{3-2b^{2}+(b+3)(2b-1)}{2b-1}=\frac{3-2b^{2}+2b^{2}-b+6b-3}{2b-1}=\frac{5b}{2b-1}; 2b-1 \neq 0, 2b \neq 1, b \neq \frac{1}{2}\)