№1785
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростите выражение и найдите его значение: \(\frac{3+2x}{(2+x)(4-x)}+\frac{1+x}{(x+2)(x-4)} при x=3,95\)
Ответ
\(20\)
Решение № 1785:
\(\frac{3+2x}{(2+x)(4-x)}+\frac{1+x}{(x+2)(x-4)}=\frac{3+2x}{(x+2)(4-x)}=\frac{1+x}{(x+2)(4-x)}=\frac{3+2x-1-x}{(x+2)(4-x)}=\frac{x+2}{(x+2)(4-x)}=\frac{1}{4-x}; x=3,95; \frac{1}{4-3,95}=\frac{1}{0,05}=\frac{1}{\frac{5}{100}}=\frac{100}{5}=20\)