№17726
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Геометрические места точек (ГМТ), свойства биссектрисы как ГМТ,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Внутри равнобедренного треугольника \(АВС\) с основанием \(ВС\) и углом \(А\), равным \(80^{\circ}\), отмечена точка \(М\) так, что \(\angle MBC=30^{\circ}\) и \(\angle MCA=10^{\circ}\). Найдите угол \(МАВ\)
Ответ
60
Решение № 17724:
Пусть \(О\) — точка пересечения прямой \(ВМ\) и биссектрисы угла \(А\) (рис. 120). Тогда \(\angle ACM = 10^{\circ}= \angle OCM\) и \(\angle COM = 60^{\circ} = \angle AOM\), поэтому \(М\) — точка пересечения биссектрис треугольника \(АСО\). Следовательно, \(\angle MAO = 20^{\circ}\) .<img src='https://hot_data_kuzovkin_info_private.hb.ru-msk.vkcs.cloud/picture_to_tasks/math/prasolov_7_9/7_geometry/185_answer.png' />