№17713
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \log _{\sqrt{x}}a*\log _{a^{2}}\frac{a^{2}}{2a-x}=1 \)
Ответ
\( x=a )\, где \( 0< a\neq 1 )\
Решение № 17711:
ОДЗ: \( \left\{\begin{matrix} 0< a\neq 1, & & & \\ x\neq 2a, & & & \\ 0< x\neq 1 & & & \end{matrix}\right. \) Перейдем к основанию \( a \) Имеем \( \frac{\log _{a}a}{\log _{a}\sqrt{x}}*\frac{\log _{a}\frac{a^{2}}{2a-x}}{\log _{a}a^{2}}=1 \Leftrightarrow \log _{a}\left ( 2a-x \right )+\log _{a}x=2 \Leftrightarrow \log _{a}x\left ( 2a-x \right )=2, x\left ( 2a-x \right )=a^{2}, x^{2}-2ax+a^{2}=0, \left ( x-a \right )^{2}=0 \), откуда \( x=a \)