№17540
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Доказать, что \( \frac{\log _{a}x}{\log _{ab}x}=1+\log _{a}b \)
Ответ
Что и требовалось доказать
Решение № 17538:
\( \frac{\log _{a}x}{\frac{\log _{a}x}{\log _{a}ab}}=\frac{\log _{a}x*\log _{a}ab}{\log _{a}x}=\log _{a}ab=\log _{a}a+\log _{a}b=1+\log _{a}b \)