Задача №17539

№17539

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Доказать, что \( \log _{ab}c=\frac{\log _{a}c*\log _{b}c}{\log _{a}c+\log _{b}c} \)

Ответ

Что и требовалось доказать

Решение № 17537:

\( \log _{ab}c=\frac{\log _{a}c}{1+\log _{a}b}=\frac{\log _{a}c*\frac{\log _{a}c}{\log _{a}b}}{\left ( 1+\log _{a}b \right \)frac{\log _{a}c}{\log _{a}b}}=\frac{\log _{a}c*\log _{b}c}{\frac{\log _{a}c}{\log _{a}b}+\log _{a}c}=\frac{\log _{a}c*\log _{b}c}{\log _{a}c+\log _{b}c} \)

Поделиться в социальных сетях

Комментарии (0)