№17537
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \log _{6}\sqrt[7]{3^{x\left ( 15-x \right )}}+8\log _{6}2= 8 \)
Ответ
7; 8
Решение № 17535:
Из условия \( \log _{6}3^{x\left ( 15-x \right )/7}+\log _{6}2^{8}=8, \log _{6}\left ( 3^{x\left ( 15-x \right )/7}*2^{8} \right )=8 \) Отсюда \( \left ( 3^{x\left ( 15-x \right )/7}*2^{8}=6^{8}, 3^{x\left ( 15-x \right )/7}=3^{8} \) Тогда \( \frac{x\left ( 15-x \right )}{7}=8, x^{2}-15x+56=0 \), откуда \( x_{1}=7, x_{2}=8\)