Задача №17536

№17536

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \log _{2}\log _{3}\left ( x^{2}-16 \right )-\log _{1/2}\log _{1/3}\frac{1}{x^{2}-16}=2 \)

Ответ

-5; 5

Решение № 17534:

ОДЗ: \( \log _{3}\left ( x^{2}-16 \right )> 0 \Leftrightarrow x^{2}-16> 3 \Leftrightarrow x^{2}> 19 \Leftrightarrow x\epsilon \left ( -\infty ; -\sqrt{19} \right \)cup \left ( \sqrt{19}; \infty \right ) \) Перепишем уравнение в виде \( \log _{2}\log _{3}\left ( x^{2}-16 \right )+\log _{2}\log _{3}\left ( x^{2}-16 \right )=2 \Leftrightarrow 2\log _{2}\log _{3}\left ( x^{2}-16 \right )=2 \Leftrightarrow \log _{2}\log _{3}\left ( x^{2}-16 \right )=1 \), откуда \( \log _{3}\left ( x^{2}-16 \right )=2 \Leftrightarrow x^{2}-16=9, x^{2}=25 \) Получили \( x_{1,2}=\pm 5 \)

Поделиться в социальных сетях

Комментарии (0)