№17534
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \lg \left ( 625\sqrt[5]{5^{x^{2}-20x +55}} \right )=0 \)
Ответ
5; 15
Решение № 17532:
Из условия имеем \( 625*5^{\frac{x^{2}-20x+55}{5}}=1, 5^{\frac{x^{2}-20x+55}{5}}=5^{-4} \) , откуда \( \frac{x^{2}-20x+55}{5}=-4, x^{2}-20x +75=0 \) . Тогда \( x_{1}=5; x_{ 2}=15 \)