Задача №17529

№17529

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \log _{3}\left ( 3^{x^{2}-13x+28}+\frac{2}{9} \right )=\log _{5}0.2 \)

Ответ

3; 10

Решение № 17527:

Из условия \( \log _{3}\left ( 3^{x^{2}-13x+28}+\frac{2}{9} \right )=-1, 3^{x^{2}-13x+28}+\frac{2}{9}=\frac{1}{3}, 3^{x^{2}-13x+28}=\frac{1}{9}, 3^{x^{2}-13x+28}=3^{-2}, x^{2}-13x+28=-2, x^{2}-13x+30=0 \), откуда \( x_{1}=3, x_{2}=10 \)

Поделиться в социальных сетях

Комментарии (0)