№17526
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( 1+2\log _{x}2*\log _{4}\left ( 10-x \right )=\frac{5}{\log _{4}x} \)
Ответ
2; 8
Решение № 17524:
ОДЗ: \( \left\{\begin{matrix} 0< x\neq 1 & & \\ x< 10 & & \end{matrix}\right.\) Переходя к основанию 2, имеем \( 1+\frac{\log _{2}\left ( 10-x \right )}{\log _{2}x}-\frac{4}{\log _{2}x}, \log _{2}x+\log _{2}\left ( 10-x \right )=4, \log _{2}x\left ( 10-x \right )=4\Rightarrow x^{2}-10x+16=0 \), откуда \( x_{1}=2, x_{2}=8 \)