№17525
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( x^{\log _{4}x-2}=2^{3\left ( \log _{4}x-1 \right )} \)
Ответ
2; 64
Решение № 17523:
ОДЗ: \( 0< x\neq 1 \) Логарифмируя обе части уравнения по основанию 4, имеем \( \log _{4}x^{\log _{4}x-2}=\log _{4}2^{3\left ( \log _{4}x-1 \right )}, \left ( \log _{4}x-2 \right \)log _{4}x=3\left ( \log _{4}x-1 \right \)log _{4}2, \log _{4}^{2}x-2\log _{4}x=\frac{3}{2}\left ( \log _{4}x-1 \right ), 2\log _{4}^{2}x-7\log _{4}x+3=0 \) Решая это уравнение как квадратное относительно \( \log _{4}x \), найдем \( \left ( \log _{4}x \right )_{1}=\frac{1}{2}, \left ( \log _{4}x \right )_{2}=3 \) Следовательно, \( x_{1}=4^{\frac{1}{2}}=2, x_{2}=4^{3}=64 \)