№17517
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \log _{2}\left ( 25^{x+3}-1 \right )=2+\log _{2}\left ( 5^{x+3}+1 \right ) \)
Ответ
-2
Решение № 17515:
ОДЗ: \( 25^{x+3}-1> 0, 25^{x+3}> 25^{\circ}, x> -3 \) Из условия \( \log _{2}\left ( 25^{3}*25^{x}-1 \right )=\log _{2}4\left ( 5^{3}*5^{x}-1 \right ), 25^{3}*5^{2x}-1=4*5^{3}*5^{x}+4, 3125*5^{2x}-100*5^{x}-1=0 \), откуда, решая это уравнение как квадратное относительно \( 5^{x} \), имеем \( 5^{x}=-\frac{1}{125}, \varnothing \); или \( 5^{x}=5^{-2} \), откуда \( x=-2 \)