№17513
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( 17*2^{\sqrt{x^{2}-8x}}-8=2*4^{\sqrt{x^{2}-8x}} \)
Ответ
-1; 9
Решение № 17511:
ОДЗ: \( x^{2}-8x\geq 0, x\epsilon \left ( -\infty ;0 \right ]\cup \left [ 8;+\infty \right ) \) Имеем \( 2*2^{2\sqrt{x^{2}-8x}}-17*2^{\sqrt{x^{2}-8x}}+8=0 \) Решая это уравнение как квадратное относительно \( 2^{\sqrt{x^{2}-8x}} \), получаем \( 2^{\sqrt{x^{2}-8x}}=2^{-1} \), откуда \( \sqrt{x^{2}-8x}=-1, \varnothing \); или \( 2^{\sqrt{x^{2}-8x}}=8 \), откуда \( \sqrt{x^{2}-8x}=3 , x^{2}-8x=9 , x^{2}-8x-9=0, x_{1}=-1, x_{2}=9 \)