№17512
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \lg \left ( 3x^{2}+12x+19 \right )-\lg \left ( 3x+4 \right )=1 \)
Ответ
-1; 7
Решение № 17510:
ОДЗ: \( 3x+4> 0, x> -\frac{4}{3} \) Имеем \( \lg \frac{3x^{2}+12x+19}{3x+4}=1, \frac{3x^{2}+12x+19}{3x+4}=10, 3x^{2}-18x-21=0 \) при \( 3x+4\neq 0 \) Отсюда \( x_{1}=-1, x_{2}=7 \)