№17507
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( 10^{1+x^{2}}-10^{1-x^{2}}=99 \)
Ответ
-1; 1
Решение № 17505:
Имеем \( 10*10^{x^{2}}-\frac{10}{10^{x^{2}}}-99=0\Rightarrow 10*10^{2x^{2}}-99*10^{x^{2}}-10=0 \) Решив это уравнение как вадратное относительно \( 10^{x^{2}} \), получим \( 10^{x^{2}}=-\frac{1}{10}, \varnothing \), или \( 10^{x^{2}}=10 \), откуда \( x^{2}=1, x_{1,2}=\pm 1 \)