№17503
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( 4^{\log _{9}x^{2}}+\log _{\sqrt{3}}3=0.2\left ( 4^{2+\log _{9}x}-4^{\log _{9} x} \right ) \)
Ответ
1, 3
Решение № 17501:
ОДЗ: \( x> 0 \) Перепишем уравнение в виде \( 4^{2\log _{9}x}+2\log _{3}3=0.2\left ( 16*4^{\log _{9}x}-4^{\log _{9} x} \right ), 4^{2\log _{9}x} -3 *4^{ \log _{ 9} x} +2 =0 \) Решая это уравнение как квадратное относительно \( 4^{\log _{9}x} \), найдем \( \left ( 4^{\log _{9}x} \right )_{1}=1 \), откуда \( \left ( \log _{9}x \right )_{1}=0, x_{1}=1 \), или \( \left ( 4^{\log _{9}x} \right )_{2}=2 \), откуда \( \left ( log_{9}x \right )_{2}=\frac{1}{2}, x_{2}=3 \)