Задача №17502

№17502

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \log _{3}\left ( x-3 \right )^{2}+\log _{3}\left | x-3 \right |=3 \)

Ответ

0; 6

Решение № 17500:

ОДЗ: \( x-3\neq 0, x\neq 3 \) Из условия \( 2\log _{3}\left | x-3 \right |+\log _{3}\left | x-3 \right |=3, 3\log _{3}\left | x-3 \right |=3 , \log _{3}\left | x-3 \right |=1 \), откуда \( \left | x-3 \right |=3 \) Тогда \( \left ( x-3 \right )_{1}=-3 \), или \( \left ( x-3 \right )_{2}=3 \) Отсюда \( x_{1}=0, x_{2}=6 \)

Поделиться в социальных сетях

Комментарии (0)