Задача №17501

№17501

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \sqrt[3]{27^{5\sqrt{x}}}=3^{x}\left ( \sqrt{x}-4 \right ) \)

Ответ

0; 25

Решение № 17499:

ОДЗ: \( x\geq 0 \) Имеем \( 3^{5\sqrt{x}}=3^{x}\left ( \sqrt{x}-4 \right \)Rightarrow 5\sqrt{x}=x\left ( \sqrt{x}-4 \right ) , \sqrt{x}=0, x_{1}=0 \), или \( \left ( \sqrt{x} \right )^{2}-4\sqrt{x}-5=0 \) Решая это уравнение как квадратное относительно \( \sqrt{x} \), получаем \( \sqrt{x}=-1, \varnothing \); или \( \sqrt{x}=5, x=25 \)

Поделиться в социальных сетях

Комментарии (0)