№17500
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( 9^{\log _{\frac{1}{3}\left }( x+1 \right )}=5^{\log _{\frac{1}{5}\left }( 2x^{2}+1 \right )} \)
Ответ
0; 2
Решение № 17498:
ОДЗ: \( x+1> 0, x> -1 \) Из условия \( 3^{\log _{3}\left ( x+1 \right )^{-2}}=5^{\log _{5}\left ( 2x^{2}+1 \right )^{-1}}, \left ( x+1 \right )^{-2}=\left ( 2x^{2}+1 \right )^{-1}, \frac{1}{\left ( x+1 \right )^{2}}=\frac{1}{2x^{2}+1} \) Решая это уравнение, имеем \( x_{1}=0, x_{2}=2 \)