Задача №17499

№17499

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Решить уравнения: \( 27^{x}-13*9^{x}+13*3^{x+1}-27=0 \)

Ответ

0; 1; 2

Решение № 17497:

Имеем \( 3^{3x}-13*3^{2x}+39*3^{x}-27=0 \Leftrightarrow \left ( 3^{3x}-27 \right )-13*3^{x}\left ( 3^{x}-3 \right )=0 \Leftrightarrow \left ( 3^{x}-3 \right \)left ( 3^{2x}+3*3^{x}+9 \right )-13*3^{x}\left ( 3^{x}-3 \right )=0 \Leftrightarrow \left ( 3^{x}-3 \right \)left ( 3^{2x}-10*3^{x}+9 \right )=0 \Leftrightarrow \left ( 3^{x}-3 \right \)left ( 3^{x}-1 \right \)left ( 3^{x}-9 \right )=0 \Rightarrow 3^{x}-3=0, 3^{x}-1=0, 3^{x}-9=0 \) Таким образом, \( x_{1}=1, x_{2}=0, x_{3}=2 \)

Поделиться в социальных сетях

Комментарии (0)