№17498
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( x^{\lg x}=1000x^{2} \)
Ответ
0,1; 1000
Решение № 17496:
ОДЗ: \( 0< x\neq 1 \) Логарифмируя обе части уравнения по основанию 10, получаем \( \lg x^{\lg x}=\lg 1000x^{2} , \lg x\lg x=\lg 1000+\lg x^{2}, \lg ^{2}x+2\lg x-3=0 \) Решая это уравнение как квадратное относительно \( \lg x \), получаем \( \left ( \lg x \right )_{1}=-1 \), или \( \left ( \lg x \right )_{2}=3 \), откуда \( x_{1}=0.1, x_{2}=1000 \)