Задача №17488

№17488

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность,  Арифметическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,

Задача в следующих классах: 9 класс

Сложность задачи : 3

Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.

Условие

Известно. что в некоторую арифметическую прогрессию входят члены \(a_{2n}\) и \(a_{2m}\) такие, что \(\frac{a_{2n}}{a_{2m}}=-1\). Имеется ли член этой прогрессии, равный нулю? Если да, то каков номер этого члена?

Ответ

n+m

Решение № 17486:

NaN

Поделиться в социальных сетях

Комментарии (0)