Задача №17350

№17350

Экзамены с этой задачей:

Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Условие

Суммы противоположных сторон выпуклого четырехугольника равны между собой. Докажите, что все стороны четырехугольника касаются некоторой окружности.

Ответ

NaN

Решение № 17348:

Первый способ. Пусть \(AB + CD = BC + AD\) и прямые \(AB\) и \(CD\) пересекаются в точке \(M\). Впишем окружность в треугольник \(AMB\). Пусть она полностью содержится в четырехугольнике \(ABCD\) (см. рис. ниже,а). Докажем, что она касается \(BC\). Если это не так, то проведем через точку \(B\) касательную к окружности, пересекающую \(CD\) в точке \(C_{1}\). Тогда \(AB + CD = BC + AD и AB + C_{1}D = BC_{1} + AD\). Вычитая почленно эти равенства, получим \(CC_{1} + BC_{1} = BC\), что невозможно. Аналогично рассматриваются остальные случаи. Второй способ. Пусть \(AB + CD = BC + AD − AD = BC − CD\). Рассмотрим случай, когда \( AB> AD \)(см. рис. ниже,б). Тогда \( BC > CD\). На отрезке \(AB\) возьмем такую точку \(T\), чтобы \( AT = AD\), а на отрезке \(BC\) — такую точку \(S\), чтобы \(CS = CD\). Тогда треугольники \(TBS, ADT\) и \(CDS\) равнобедренные. Биссектрисы их углов при вершинах \( B, A\) и \(C\) являются серединными перпендикулярами к отрезкам \(TS, DT\) и \(DS\) соответственно, т.е. серединными перпендикулярами к сторонам треугольника \(DTS\). Поэтому биссектрисы углов \(B, A\) и \(C\) пересекаются в одной точке — центре описанной окружности треугольника \(DTS\). Эта точка равноудалена от всех сторон четырехугольника \(ABCD\). Следовательно, она является центром вписанной окружности четырехугольника \(ABCD\). Аналогично для \(AB < AD\). Если же \(AB = AD\), то утверждение очевидно. <img src='https://hot_data_kuzovkin_info_private.hb.ru-msk.vkcs.cloud/picture_to_tasks/math/gordin/7_9_klass/40_answer_gord.png' />

Поделиться в социальных сетях

Комментарии (0)