№17336
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсеченного треугольника.
Ответ
16
Решение № 17334:
Пусть \(K\) — точка касания окружности, вписанной в треугольник \(ABC\) (см. рис. ниже), со стороной \(AB (AB = 10, AC = 12, BC = 6)\). Если \(p\) — полупериметр треугольника, то \(AK = p − BC = 14 − 6 = 8\), а \(AK\) равно полупериметру отсеченного треугольника.<img src='https://hot_data_kuzovkin_info_private.hb.ru-msk.vkcs.cloud/picture_to_tasks/math/gordin/7_9_klass/23_answer_gord.png' />