№17334
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
На основании \(AB\) равнобедренного треугольника \(ABC\) взята точка \(D\), причем \(BD − AD = 4\). Найдите расстояние между точками, в которых окружности, вписанные в треугольники \(ACD\) и \(BCD\), касаются отрезка \(CD\).
Ответ
NaN
Решение № 17332:
Пусть окружности, вписанные в треугольники \(ACD\) и \(BCD\), касаются отрезка \(CD\) в точках \(M\) и \(N\) соответственно. Поскольку \(AC = BC\), а \( CM=\frac{AC+CD-AD}{2}, CN=\frac{BC+CD-BD}{2}, \), ТО \( MN=\left | CM-CN \right |=\left | \frac{AC+CD-AD}{2}- \frac{BC+CD-BD}{2} \right |= \frac{\left | BD-AD \right |}{2}=\frac{4}{2}=2 \)