№17333
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
\(CD\) — медиана треугольника . Окружности, вписанные в треугольники \(ACD\) и \(BCD\), касаются отрезка \(CD\) в точках \(M\) и \(N\). Найдите \(MN\), если \(AC − BC = 2\).
Ответ
NaN
Решение № 17331:
Поскольку \(AD = DB\), а \(CM = 1/2(AC + CD - AD)\) и \(CN = 1/2(BC + CD - BD)\), то \( MN = | CM - CN| = | 1/2(AC + CD - AD) - 1/2(BC + CD - BD)| = 1/2| AC - BC| = 1/2 . 2 = 1\)