№17330
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Пусть \(r\) — радиус окружности, вписанной в прямоугольный треугольник с катетами \(a\) и \(b\) и гипотенузой \(c\). Докажите, что \( r=\frac{1}{2} \left ( a+b-c \right ) \) .
Ответ
NaN
Решение № 17328:
Обозначим вершины треугольника, противолежащие сторонам \( a, b, c \), через \( A, B, C\) соответственно, а точки касания — через \( A_{1}, B_{1}, C_{1}\) (см. рис. ниже). Если \( O\) — центр данной окружности, то \( OA_{1}CB_{1}\) — квадрат. Поэтому \( CA_{1} = r, BC_{1} = BA_{1} = a − r, AC_{1} = AB_{1} = b − r, c = AB = AC_{1} + C_{1}B = a + b − 2r\). Следовательно,\( \frac{1}{2}\left ( a+b-c \right ) \) . <img src='https://hot_data_kuzovkin_info_private.hb.ru-msk.vkcs.cloud/picture_to_tasks/math/gordin/7_9_klass/17_answer_gord.png' />