№17328
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Окружность, вписанная в треугольник \(ABC\), касается его сторон \(AB, BC\) и \(AC\) соответственно в точках \(K, M\) и \(N\). Найдите угол \(KMN\), если \(\angle A = 70^{\circ}\).
Ответ
55
Решение № 17326:
Обозначим углы треугольника при вершинах \(A, B\) и \(C\) соответственно \( \alpha ,\beta ,\gamma \). Поскольку \(BM = BK\) и \(CM = CN\), то треугольники \(MBK\) и \(MCN\) – равнобедренные. Поэтому \(\angle BMK=90^{\circ}-\frac{\beta }{2}, \angle CMN=90^{\circ}-\frac{\gamma }{2}. \) Следовательно, \( \angle KMN=360^{\circ}-\angle BMK-MCN=180^{\circ}-\left ( 90^{\circ}-\frac{\beta }{2} \right )-\left ( 90-\frac{\gamma }{2}^{\circ} \right )=\frac{1}{2}\left ( \beta +\gamma \right )=90^{\circ}-\frac{\alpha }{2}=55^{\circ} \).