Задача №17319

№17319

Экзамены с этой задачей:

Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Окружность вписана в треугольник со сторонами, равными \(a\), \(b\) и \(c\). Найдите отрезки, на которые точка касания делит сторону, равную \(a\).

Ответ

\( \frac{1}{2}\left ( a-c+b \right ), \frac{1}{2}\left ( a+c-b \right )\)

Решение № 17317:

Обозначьте один из искомых отрезков через \(x\) и примените теорему о равенстве отрезков касательных, проведенных к окружности из одной точки.

Поделиться в социальных сетях

Комментарии (0)