№17262
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Геометрические места точек (ГМТ), свойства биссектрисы как ГМТ,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Докажите, что, если в треугольнике один угол равен \(120^{o}\), то треугольник, образованный основаниями его биссектрис, прямоугольный.
Ответ
NaN
Решение № 17260:
Внешний угол с вершиной \(А\) треугольника \(АВС\) равен \(60^{\circ}\) (см. рис. ниже). Поэтому луч \(АВ_{1}\) является биссектрисой внешнего угла треугольника \(АВА_{1}\) . Луч \(ВВ_{1}\) является биссектрисой угла \(В\) этого треугольника. Поэтому луч \(А_{1} В_{1}\) является биссектрисой угла \(АА_{1}С\). Аналогично луч \(А_{1}С_{1}\) является биссектрисой угла \(АА_{1}В\). Угол между биссектрисами двух смежных углов равен \(90^{\circ}\). <img src='https://hot_data_kuzovkin_info_private.hb.ru-msk.vkcs.cloud/picture_to_tasks/math/prasolov_7_9/7_geometry/183_answer.png' />