№17259
Экзамены с этой задачей:
Предмет и тема: Математика, Геометрия, Планиметрия, Геометрические места точек (ГМТ), свойства биссектрисы как ГМТ,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Докажите, что биссектрисы треугольника пересекаются в одной точке.
Ответ
NaN
Решение № 17257:
Пусть биссектрисы \(АD\) и \(ВЕ\) треугольника \(АВС\) пересекаются в точке \(О\). Тогда точка \(О\) равноудалена от прямых \(АВ\) и \(АС\) и от прямых \(ВА\) и \(ВС\), поэтому она равноудалена от прямых \(СА\) и \(СВ\). При этом точка \(О\) лежит внутри треугольника \(АВС\). Следовательно, она лежит на биссектрисе треугольника, проведённой из вершины \(C\).<img src='https://hot_data_kuzovkin_info_private.hb.ru-msk.vkcs.cloud/picture_to_tasks/math/prasolov_7_9/7_geometry/164_answer.png' />