Задача №17119

№17119

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение \(\frac{\sqrt{\left ( 2p+1 \right )^{3}}+\sqrt{\left ( 2p-1 \right )^{3}}}{\sqrt{4p+2\sqrt{4p^{2}-1}}}\)

Ответ

\(4p-\sqrt{4p^{2}-1}\)

Решение № 17117:

\(\frac{\sqrt{\left ( 2p+1 \right )^{3}}+\sqrt{\left ( 2p-1 \right )^{3}}}{\sqrt{4p+2\sqrt{4p^{2}-1}}}=\frac{\left ( \sqrt{2p+1}+\sqrt{2p-1} \right )\left ( \left ( \sqrt{2p+1} \right )^{2}-\sqrt{2p+1}\sqrt{2p-1}+\left ( \sqrt{2p-1} \right )^{2}\right ) }{\sqrt{2p+1+2\sqrt{4p^{2}-1}}+2p-1}=\frac{\left ( \sqrt{2p+1}+\sqrt{2p-1} \right )\left ( 4p-\sqrt{4p^{2}-1} \right )}{\sqrt{\left ( \sqrt{2p+1}+\sqrt{2p-1} \right )^{2}}}=4p-\sqrt{4p^{2}-1}\)

Поделиться в социальных сетях

Комментарии (0)