№17088
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить выражение \(\left ( \frac{9-4a^{-2}}{3a^{-\frac{1}{2}}}+2a^{-\frac{3}{2}}-\frac{1+a^{-1}-6a^{-2}}{a^{-\frac{1}{2}}+3a^{-\frac{3}{2}}} \right )^{4}\)
Ответ
\(16a^{2}\)
Решение № 17086:
\(\left ( \frac{9-4a^{-2}}{3a^{-\frac{1}{2}}}+2a^{-\frac{3}{2}}-\frac{1+a^{-1}-6a^{-2}}{a^{-\frac{1}{2}}+3a^{-\frac{3}{2}}} \right )^{4}=\left ( \frac{9a^{2}-4}{a^{2}}\cdot \frac{a^{\frac{3}{2}}}{3a+2}-\frac{a^{2}+a-6}{a^{2}}\cdot \frac{a^{\frac{3}{2}}}{a+3} \right )^{4}=\left ( \frac{3a-2}{a^{\frac{1}{2}}}-\frac{a-2}{a^{\frac{1}{2}}} \right )^{4}=\left ( \frac{2a}{a^{\frac{1}{2}}} \right )^{4}=\left ( 2a^{\frac{1}{2}} \right )^{4}=16a^{2}\)