№17069
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\left ( \frac{1}{\sqrt{a}+\sqrt{a+1}} +\frac{1}{\sqrt{a}-\sqrt{a-1}}\right ):\left ( 1+\sqrt{\frac{a+1}{a-1}} \right )\)
Ответ
\(\sqrt{a-1}\)
Решение № 17067:
\(\left ( \frac{1}{\sqrt{a}+\sqrt{a+1}} +\frac{1}{\sqrt{a}-\sqrt{a-1}}\right ):\left ( 1+\sqrt{\frac{a+1}{a-1}} \right )=\frac{\sqrt{a}-\sqrt{a-1}+\sqrt{a}+\sqrt{a+1}}{\left ( \sqrt{a}+\sqrt{a+1} \right )\left (\sqrt{a}-\sqrt{a-1} \right )}:\frac{\sqrt{a+1}+\sqrt{a-1}}{\sqrt{a-1}}=\frac{2\sqrt{a}+\sqrt{a+1}-\sqrt{a-1}}{a+\sqrt{a\left ( a+1 \right )}-\sqrt{a\left ( a-1 \right )}-\sqrt{\left ( a-1 \right )\left ( a+1 \right )}}:\frac{\sqrt{a+1}+\sqrt{a-1}}{\sqrt{a-1}}=\frac{\sqrt{a-1}\left ( 2\sqrt{a}+\sqrt{a+1}-\sqrt{a-1} \right )}{2\sqrt{a}+\sqrt{a+1}-\sqrt{a-1}}=\sqrt{a-1}\)