№17067
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(1-\frac{\frac{1}{\sqrt{a-1}}-\sqrt{a+1}}{\frac{1}{\sqrt{a+1}}-\frac{1}{\sqrt{a-1}}}:\frac{\sqrt{a+1}\sqrt{a^{2}-1}}{\left ( a-1 \right )\sqrt{a+1}-\left ( a+1 \right )\sqrt{a-1}}\)
Ответ
\(\sqrt{a^{2}-1}\)
Решение № 17065:
\(1-\frac{\frac{1}{\sqrt{a-1}}-\sqrt{a+1}}{\frac{1}{\sqrt{a+1}}-\frac{1}{\sqrt{a-1}}}:\frac{\sqrt{a+1}\sqrt{a^{2}-1}}{\left ( a-1 \right )\sqrt{a+1}-\left ( a+1 \right )\sqrt{a-1}}=1-\frac{\frac{1-\sqrt{a^{2}-1}}{\sqrt{a-1}}}{\frac{\sqrt{a-1}-\sqrt{a+1}}{\sqrt{\left ( a+1 \right )\left ( a-1 \right )}}}:\frac{\sqrt{a+1}\sqrt{\left ( a-1 \right )\left ( a+1 \right) }}{\left ( \sqrt{a-1}-\sqrt{a+1} \right )}=1-\frac{\left ( 1-\sqrt{a^{2}-1} \right )\sqrt{\left ( a+1 \right )\left ( a-1 \right )}}{\sqrt{a-1}\left ( \sqrt{a-1}-\sqrt{a+1} \right )}\cdot \frac{\sqrt{a-1}-\sqrt{a+1}}{\sqrt{a+1}}=1-1+\sqrt{a^{2}-1}=\sqrt{a^{2}-1}\)