Задача №17065

№17065

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение \(\sqrt[4]{6x\left ( 5+2\sqrt{6} \right )}\cdot \sqrt{3\sqrt{2x}-2\sqrt{3x}}\)

Ответ

\(\sqrt{6x}\)

Решение № 17063:

\(\sqrt[4]{6x\left ( 5+2\sqrt{6} \right )}\cdot \sqrt{3\sqrt{2x}-2\sqrt{3x}}=\sqrt[4]{6x\left ( 5+2\sqrt{6} \right )}\cdot \sqrt{\sqrt{6x}\left ( \sqrt{3}-\sqrt{2} \right )}=\sqrt[4]{6x\left ( 5+2\sqrt{6} \right )}\cdot \sqrt[4]{\left ( \sqrt{6x}\left ( \sqrt{3}-\sqrt{2} \right ) \right )^{2}}=\sqrt[4]{6x\left ( 5+2\sqrt{6} \right )}\cdot \sqrt[4]{6x\left ( 5-2\sqrt{6} \right )}=\sqrt[4]{6x\left ( 5+2\sqrt{6} \right )6x\left ( 5-2\sqrt{6} \right )}=\sqrt[4]{36x^{2}\left ( 25-24 \right )}=\sqrt[4]{36x^{2}}=\sqrt{6x}\)

Поделиться в социальных сетях

Комментарии (0)