Задача №17064

№17064

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Проверить справедливость равенств \(\frac{1}{\sqrt{7}-6}=\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+3}\)

Ответ

\(\sqrt{6}=\sqrt{6}\)

Решение № 17062:

\(\frac{1}{\sqrt{7}-\sqrt{6}}=\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}};\frac{\sqrt{7}+\sqrt{6}}{\left ( \sqrt{7}-\sqrt{6} \right )\left ( \sqrt{7}+\sqrt{6} \right )}=\frac{3\left ( \sqrt{6}+\sqrt{3} \right )}{\left ( \sqrt{6}-\sqrt{3} \right )\left ( \sqrt{6}+\sqrt{3} \right )}+\frac{4\left ( \sqrt{7}-\sqrt{3} \right )}{\left ( \sqrt{7}+\sqrt{3} \right )\left ( \sqrt{7}-\sqrt{3} \right )}; \frac{\sqrt{7}+\sqrt{6}}{7-6}=\frac{3\left ( \sqrt{6}+\sqrt{3} \right )}{6-3}+\frac{4\left ( \sqrt{7}-\sqrt{3} \right )}{7-3}; \sqrt{7}+\sqrt{6}=\sqrt{6}+\sqrt{3}+\sqrt{7}-\sqrt{3}; \sqrt{6}=\sqrt{6}\)

Поделиться в социальных сетях

Комментарии (0)