№17058
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\left ( \sqrt{1-x^{2}}+1 \right ):\left ( \frac{1}{\sqrt{1+x}}+\sqrt{1-x} \right )\)
Ответ
\(\sqrt{1+x}\)
Решение № 17056:
\(\left ( \sqrt{1-x^{2}}+1 \right ):\left ( \frac{1}{\sqrt{1+x}}+\sqrt{1-x} \right )=\left ( \sqrt{1-x^{2}}+1 \right ):\frac{1+\sqrt{1-x^{2}}}{\sqrt{1+x}}=\frac{\left ( \sqrt{1-x^{2}}+1 \right )\sqrt{1+x}}{1+\sqrt{1-x^{2}}}=\sqrt{1+x}\)