№17057
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\sqrt{\frac{p^{2}-q\sqrt{p}}{\sqrt{p}-\sqrt[3]{q}}+p\sqrt[3]{q}}\left ( p+\sqrt[6]{p^{3}q^{2}} \right )^{-\frac{1}{2}}\)
Ответ
\(\sqrt{\sqrt{p}+\sqrt[3]{q}}\)
Решение № 17055:
\(\sqrt{\frac{p^{2}-q\sqrt{p}}{\sqrt{p}-\sqrt[3]{q}}+p\sqrt[3]{q}}\left ( p+\sqrt[6]{p^{3}q^{2}} \right )^{-\frac{1}{2}}=\sqrt{\sqrt{p}\left ( \sqrt{p^{2}}+\sqrt{p}\sqrt[3]{q}+\sqrt[3]{q^{2}}\right )+p\sqrt[3]{q}}\cdot \frac{1}{\sqrt{\sqrt{p}\left ( \sqrt{p}+\sqrt[3]{q} \right )}}=\sqrt{\frac{\left ( \sqrt{p}+\sqrt[3]{q} \right )^{2}}{\sqrt{p}+\sqrt[3]{q}}}=\sqrt{\sqrt{p}+\sqrt[3]{q}}\)