Задача №17056

№17056

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Упростить выражение и вычислить \(\frac{\left ( \left ( x+2 \right )^{-\frac{1}{2}} +\left ( x-2 \right )^{-\frac{1}{2}}\right )^{-1}+\left ( \left ( x+2 \right )^{-\frac{1}{2}}-\left ( x*2 \right )^{-\frac{1}{2}} \right )^{-1}}{\left ( \left ( x+2 \right )^{-\frac{1}{2}}+\left ( x-2 \right )^{-\frac{1}{2}} \right )^{-1}-\left ( \left ( x+2 \right )^{-\frac{1}{2}}-\left ( x-2 \right )^{-\frac{1}{2}} \right )^{-1}}\)

Ответ

\(-\sqrt{\frac{x-2}{x+2}}\)

Решение № 17054:

\(\frac{\left ( \left ( x+2 \right )^{-\frac{1}{2}} +\left ( x-2 \right )^{-\frac{1}{2}}\right )^{-1}+\left ( \left ( x+2 \right )^{-\frac{1}{2}}-\left ( x*2 \right )^{-\frac{1}{2}} \right )^{-1}}{\left ( \left ( x+2 \right )^{-\frac{1}{2}}+\left ( x-2 \right )^{-\frac{1}{2}} \right )^{-1}-\left ( \left ( x+2 \right )^{-\frac{1}{2}}-\left ( x-2 \right )^{-\frac{1}{2}} \right )^{-1}}=\frac{\left ( \frac{1}{\sqrt{x+2}}+\frac{1}{\sqrt{x-2}} \right )^{-1}+ \left ( \frac{1}{\sqrt{x+2}}-\frac{1}{\sqrt{x-2}} \right )^{-1}}{ \left ( \frac{1}{\sqrt{x+2}}+\frac{1}{\sqrt{x-2}} \right )^{-1} -\left ( \frac{1}{\sqrt{x+2}}-\frac{1}{\sqrt{x-2}} \right )^{-1}}=\frac{\frac{\sqrt{x-2}-\sqrt{x+2}+\sqrt{x-2}+\sqrt{x+2}}{\left ( \sqrt{x-2}+\sqrt{x+2} \right )\left ( \sqrt{x-2}-\sqrt{x+2} \right )}}{\frac{\sqrt{x-2}+\sqrt{x+2}-\sqrt{x-2}+\sqrt{x+2}}{\left ( \sqrt{x-2}+\sqrt{x+2} \right )\left ( \sqrt{x-2}-\sqrt{x+2} \right )}}=-\frac{\sqrt{x-2}}{\sqrt{x+2}}=-\sqrt{\frac{x-2}{x+2}}\)

Поделиться в социальных сетях

Комментарии (0)