№17052
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить выражение \(\frac{x^{\frac{3}{p}}-x^{\frac{3}{q}}}{\left ( x^{\frac{1}{p}}+x^{\frac{1}{q}} \right )^{2}-2x^{\frac{1}{q}}\left ( x^{\frac{1}{p}}+x^{\frac{1}{q}} \right )}+\frac{x^{\frac{2}{p}}}{x^{\frac{q-p}{pq}}+1}\)
Ответ
\(\sqrt[p]{x}+\sqrt[q]{x}\)
Решение № 17050:
\(\frac{x^{\frac{3}{p}}-x^{\frac{3}{q}}}{\left ( x^{\frac{1}{p}}+x^{\frac{1}{q}} \right )^{2}-2x^{\frac{1}{q}}\left ( x^{\frac{1}{p}}+x^{\frac{1}{q}} \right )}+\frac{x^{\frac{2}{p}}}{x^{\frac{q-p}{pq}}+1}=\frac{\left ( x^{\frac{1}{p}}-x^{\frac{1}{q}} \right )\left ( x^{\frac{2}{p}}+x^{\frac{1}{p}}x^{\frac{1}{q}}+x^{\frac{2}{q}} \right )}{\left ( x^{\frac{1}{p}}+x^{\frac{1}{q}} \right )\left ( x^{\frac{1}{p}}-x^{\frac{1}{q}} \right )}+\frac{x^{\frac{1}{p}}}{\frac{x^{\frac{1}{p}}}{x^{\frac{1}{q}}}+1}=x^{\frac{1}{p}}+x^{\frac{1}{q}}=\sqrt[p]{x}+\sqrt[q]{x}\)