№17048
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\frac{\sqrt[3]{2a+2\sqrt{a^{2}-1}}}{\left ( \frac{\sqrt{a-1}}{\sqrt{a+1}}+\frac{\sqrt{a+1}}{\sqrt{a-1}}+2 \right )^{\frac{1}{3}}}\)
Ответ
\(\sqrt[6]{a^{2}-1}\)
Решение № 17046:
\(\frac{\sqrt[3]{2a+2\sqrt{a^{2}-1}}}{\left ( \frac{\sqrt{a-1}}{\sqrt{a+1}}+\frac{\sqrt{a+1}}{\sqrt{a-1}}+2 \right )^{\frac{1}{3}}}=\frac{\sqrt[3]{\left ( \sqrt{a-1} \right )^{2}+2\sqrt{\left ( a-1 \right )\left ( a+1 \right )}+\left ( \sqrt{a+1} \right )^{2}}}{\sqrt[3]{\frac{\left ( \sqrt{a-1}+\sqrt{a+1} \right )^{2}}{\sqrt{a^{2}-1}}}}=\sqrt[3]{\left ( \sqrt{a-1}+\sqrt{a+1} \right )^{2}}\cdot \frac{\sqrt[6]{a^{2}-1}}{\sqrt[3]{\left ( \sqrt{a-1} +\sqrt{a+1}\right )^{2}}}=\sqrt[6]{a^{2}-1}\)