№17044
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\sqrt{\frac{\sqrt{\left ( a-y \right )\left ( y-b \right )}+\sqrt{\left ( a+y \right )\left ( y+b \right )}}{\sqrt{\left ( a+y \right )\left ( y+b \right )}-\sqrt{\left ( a-y \right )\left ( y-b \right )}}}\)
Ответ
\(\sqrt[4]{\frac{b}{a}};\sqrt[4]{\frac{a}{b}}\)
Решение № 17042:
\(\sqrt{\frac{\sqrt{\left ( a-y \right )\left ( y-b \right )}+\sqrt{\left ( a+y \right )\left ( y+b \right )}}{\sqrt{\left ( a+y \right )\left ( y+b \right )}-\sqrt{\left ( a-y \right )\left ( y-b \right )}}}=\sqrt{\frac{\left ( \sqrt{\left ( a-y \right )\left ( y-b \right )}+\sqrt{\left ( a+y \right )\left ( y+b \right )} \right )\left ( \sqrt{\left ( a+y \right )\left ( y+b \right )}+\sqrt{\left ( a-y \right )\left ( y-b \right )} \right )}{\left ( \sqrt{\left ( a+y \right )\left ( y+b \right )}\sqrt{\left ( a-y \right )\left ( y-b \right )} \right )\left ( \sqrt{\left ( a+y \right )\left ( y+b \right )}+\sqrt{\left ( a-y \right )\left ( y-b \right )} \right )}}=\sqrt{\frac{-y^{2}+\left ( a+b \right )y-ab+2\sqrt{-y^{4}+\left ( a^{2}+b^{2} \right )y^{2}-a^{2}b^{2}}}{y^{2}+\left ( a+b \right )y+ab+y^{2}-\left ( a+b \right )y+ab}}=\sqrt{\frac{\left ( a+b \right )y+\sqrt{-y^{4}+\left ( a^{2}+b^{2} \right )y^{2}-a^{2}b^{2}}}{2y^{2}+2ab}}=\sqrt{\frac{\left ( a+b \right )\sqrt{ab}+\sqrt{-a^{2}b^{2}+\left ( a^{2}+b^{2} \right )ab-a^{2}b^{2}}}{ab+ab}}=\sqrt{\frac{\left ( a+b \right )\sqrt{ab}+\sqrt{ab\left ( a^{2}-2ab+b^{2} \right )}}{2ab}}=\sqrt{\frac{a+b+\left | a-b \right |}{2\sqrt{ab}}}=\sqrt[4]{\frac{b}{a}};\sqrt[4]{\frac{a}{b}}\)