№17039
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростить выражение \(\sqrt[6]{6x\left (11+4\sqrt{6} \right )}\cdot \sqrt[3]{4\sqrt{2x}-2\sqrt{3x}}\)
Ответ
\(\sqrt[3]{20x}\)
Решение № 17037:
\(\sqrt[6]{6x\left (11+4\sqrt{6} \right )}\cdot \sqrt[3]{4\sqrt{2x}-2\sqrt{3x}}=\sqrt[6]{4x\left ( 11+4\sqrt{6} \right )}\cdot \sqrt[3]{2\sqrt{x}\left ( 2\sqrt{2}-\sqrt{3} \right )}=\sqrt[6]{4x\left (11+4\sqrt{6} \right )}\cdot \sqrt[6]{\left ( 2\sqrt{x}\left ( 2\sqrt{2}-\sqrt{3} \right ) \right )^{2}}=\sqrt[6]{4x\left ( 11+4\sqrt{6} \right )}\cdot \sqrt[6]{4x\left (11-4\sqrt{6} \right )}=\sqrt[6]{4x\left (11+4\sqrt{6} \right )4x\left (11-4\sqrt{6} \right )}=\sqrt[6]{16x^{2}\left ( 121-96 \right )}=\sqrt[6]{400x^{2}}=\sqrt[3]{20x}\)