№17038
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить выражение и вычислить \(\left ( \sqrt{\frac{\left ( 1-n \right )^{3}\sqrt{1+n}}{n}}\sqrt[3]{\frac{3n^{2}}{4-8n+4n^{2}}} \right )^{-1}:\sqrt[3]{\left ( \frac{3n\sqrt{n}}{2\sqrt{1-n^{2}}} \right )^{-1}}\)
Ответ
\(\sqrt[3]{\frac{2n}{1+n}}\)
Решение № 17036:
\(\left ( \sqrt{\frac{\left ( 1-n \right )^{3}\sqrt{1+n}}{n}}\sqrt[3]{\frac{3n^{2}}{4-8n+4n^{2}}} \right )^{-1}:\sqrt[3]{\left ( \frac{3n\sqrt{n}}{2\sqrt{1-n^{2}}} \right )^{-1}}=\left ( \sqrt[6]{\left ( \frac{\left ( 1-n \right )^{3}\sqrt[3]{1+n}}{n^{3}} \right )^{3}}\sqrt[6]{\frac{3n^{2}}{4\left ( 1-2n+n^{2} \right )^{2}}} \right )^{-1}\sqrt[6]{\left ( \frac{3n\sqrt{n}}{2\sqrt{1-n^{2}}} \right )^{2}}=\left ( \sqrt[6]{\frac{\left ( 1-n \right )^{3}\left ( 1+n \right )9n^{4}}{n^{3}16\left ( 1-n \right )^{4}}} \right )^{-1}\sqrt[6]{\frac{9n^{3}}{4\left ( 1-n \right )\left ( 1+n \right )}}=\sqrt[6]{\frac{16\left ( 1-n \right )9n^{3}}{9n\left ( 1+n \right )4\left ( 1-n \right )\left ( 1+n \right )}}=\sqrt[6]{\frac{4n^{2}}{\left ( 1+n \right )^{2}}}=\sqrt[3]{\frac{2n}{1+n}}\)