№17036
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, упрощение иррациональных алгебраических выражений,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить выражение \(\sqrt[4]{32\sqrt[3]{4}}+\sqrt[4]{64\sqrt[3]{\frac{1}{2}}}-3\sqrt[3]{2\sqrt[4]{2}}\)
Ответ
\(\sqrt[12]{32}\)
Решение № 17034:
\(\sqrt[4]{32\sqrt[3]{4}}+\sqrt[4]{64\sqrt[3]{\frac{1}{2}}}-3\sqrt[3]{2\sqrt[4]{2}}=\sqrt[4]{2^{5}\cdot 2^{\frac{2}{3}}}+\sqrt[4]{2^{6}\cdot 2^{-\frac{1}{3}}}-3\sqrt[3]{2\cdot 2^{\frac{1}{4}}}=2^{\frac{17}{12}}+2^{\frac{17}{12}}-3\cdot 2^{\frac{5}{12}}=2\cdot 2^{\frac{17}{12}}-3\cdot 2^{\frac{5}{12}}=2^{\frac{5}{12}}\left ( 4-3 \right )=2^{\frac{5}{12}}=\sqrt[12]{32}\)